Pentaquark Search and Σ^* Results from STAR

- •What is Θ^+ ? Why Σ^* ?
- ·How can we search for them at RHIC?
- ·What did we learn so far?
- ·What else can we do in the near future?

Sevil Salur

Yale University

STAR Collaboration

What is a 0+?

Quark Content: $u u d d \overline{s}$

Observed Mass: ~1540 MeV

Observed Decay Channels: p+K0 and n+K+

Observed Width: <10 MeV

K+N Quantum Numbers: Y = 2 I₃=0

Not Yet Observed: p+K⁺ partner → I=0

Chiral Soliton Model: Chiral dynamics generate narrow K+n resonance (partial motivation of experiments).

Uncorrelated Quark Model: Q 4 \overline{Q} in the lowest orbital of a mean field. Bag, NRQM...

Correlated Diquark Description: Quarks are correlated in an antisymmetric color, flavor and spin state.

Chiral Soliton Model

Correlated Quarks

Uncorrelated Quarks

R. Jaffe and F.Wilczek, hep-ph/0307341 T. Nakano et al., AAPPS Bull.13:2-6,2003 V.V. Barmin et al, hep-ex/0304040 C. Alt et al, hep-ex/0310014

Theoretical Importance of Studying Resonances

Due to the very short lifetime ($\tau < \tau_{\text{fireball}}$) of resonances:

- · Large fraction of the decays occur inside the reaction zone
- Possible change in the physical properties:
 width broadening
 mass shift
 change in p_T spectra
- Determination of the hadronic expansion time between chemical and thermal freeze-out
- Due to its strange quark content and high mass, Σ^* (1385) gives us information about strangeness production.

Particle Identification

Charged daughter particles are identified by dE/dx in the TPC.

 $\Lambda's$ and $\mathrm{K}^{\mathrm{O}}_{s}$ are reconstructed by standard decay topology technique since they have a long lifetime

($c\tau_{\Lambda}$ =7.89 cm and $c\tau_{K^0s}$ =2.7 cm).

- M=1387 \pm 1 [MeV] Γ =39 \pm 2 [MeV]

Background Subtracted Invariant Mass Spectra

Corrected PT Spectra

Exponential Fit Function:

$$\frac{1}{2\pi \, m_{T}} \frac{d^{2}N}{dm_{T}dy} = \frac{dN/dy}{2\pi \, T \, (m_{0} + T)} e^{\frac{-(m_{T} - m_{0})}{T}}$$

Particle Mass vs «PT»

Parameterization is from ISR data at $\sqrt{s}=25GeV$ (Not correct for heavy particles.)

• Are heavier particles produced in more violent p+p collisions? $\langle p_{\top} \rangle$ values merge for Au+Au and p+p for heavier particles.

There is no increase within the errors in Σ^* $\langle p_T \rangle$ from p+p to Au+Au.

UrQMD predicts more signal loss at low p_T due to more rescattering than regeneration \rightarrow $\langle p_T \rangle$ is higher.

 $\langle p_T \rangle$ for K* shows different behavior than p,K, π vs centrality. $\Sigma^*(1385)$ measurement in different centralities is on the way...

I's Yields in p+p and Au+Au

G. Torrieri and J. Rafelski, Phys. Lett. **B509** (2001) 23

No enhancement or suppression within the errors...

Comparison of two particle ratios without regeneration gives a $\Delta \tau$ ~ 3 fm between chemical and thermal freezeout and T~ 150 MeV in thermal model.

So far from Σ^* ...

• Acceptance and efficiency corrected results are presented for the Σ^* p_T spectra in p+p and the most central Au+Au collisions.

There is no strong increase of $\langle p_T \rangle$ from p+p to 0-5 % Central Au+Au. No radial flow? Different production mechanisms (jets in p+p)? $\langle p_T \rangle$ values merge for Au+Au and p+p for heavier particles.

•There is no suppression or enhancement in the ratios of Σ^*/Λ in p+p and 0-5% Central Au+Au collisions within the errors.

What about Θ^+ ?

0 * Simulation Studies

Reconstruction OUTPUT

Monte Carlo INPUT

One $MC \Theta^+$ (T_{inv} slope =250 MeV) is embedded in each real p+p event.

Only 3% of these Θ^+ 's were reconstructed after cuts.

The width and the mass remain consistent with the MC input after the reconstruction. (W=10 MeV) $(M=1.54 \text{ GeV/c}^2)$

Feasibility Studies for 0 + with Current p+p Data

Assuming ~0.1-1 Θ^+ per $\Lambda(1520)$ for p+p

- Preliminary dN/dy
 of Λ(1520) in pp→ 0.004 per event
- 8 Million X 0.004 \rightarrow 32 K Λ (1520)
- 0.1-1 X 32 K Θ in pp \rightarrow 3-32 K
- Efficiency 3% → 90-960
- Branching Ratio 50% → 45-480
- B R 50 % from K⁰s → 22-240

Background pairs per event in the mass range of Θ is 0.0004.

- 0.0004 X 8 Million → 3200
- σ = Signal/√(2 X Background+Signal) → 0.25-3

Observation is consistent with simulation! STILL LOOKING INTO OPTIMIZATION

Outlook - V2 ?

Nonaka et. al. Phys.Rev. C69 (2004) 031902

Resonance contribution from

- QGP hadronization
- · Coalescence in a hadron gas.

How much final state hadronhadron recombination?

The percentage of each v_2 as a function of p_T may answer ...

But we need high statistics at high p_T

 Σ (1385) Flow Measurement with Run 4!?

Conclusion & Near Future Plans

- Resonances can be clearly reconstructed via event mixing techniques in all collision environments with STAR at RHIC. There is no strong increase of $\langle p_T \rangle$ from p+p to 0-5 % Central Au+Au. No radial flow? Different production mechanisms (jets in p+p)?
- There is no suppression or enhancement in the ratios of Σ^*/Λ in p+p and 0-5% Central Au+Au collisions within the errors.
- Preliminary acceptance and efficiency studies show that we should be able to find (anti) pentaquarks at the few % level. (antibaryon/baryon~1)
- No significant signal observed in d+Au and Au+Au Central collisions either.

Still Optimistically Looking !!!

- Much more data is available from Run 4 !!! Better centrality measurement for Σ^* and possible v_2 measurement.
- Au+Au at $\int s_{NN}=200$ GeV 50 Million Events taken. (35 times the current data). The significance will increase to 10 44 if the Θ^+ is produced with the predicted theoretical yields in RHIC and our acceptance.